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Abstract

In this article, we study the cohomology of Lie algebras of vector fields of holomorphic type
Vect o(M) on a complex manifold/. The main resultis the introduction of a kind of order filtration
on the continuous cochains Mect o(M) and the calculation of the second term of the resulting
spectral sequence. The filtration is very much in the spirit of the classical order filtration of Gelfand
and Fuks, but we restrict ourselvestfets only for a local holomorphic coordinateThis permits
us to calculate the diagonal cohomology (because of the collapse of our spectral sequence) of
Vech,1(X) for a compact Riemann surfagéeof genusg > O.

In the second section, we calculate the first three cohomology spaces of the Lie &ifgelitf ¢]]
which is regarded as the formal versionvaity o(X). In the last section, we recall whec 1(X)
can be regarded as the two-dimensional analogue of the Witt algebra. Then, we define, following
Etingof and Frenkel, a central extension which is consequently a two-dimensional analogue of the
Virasoro algebra — our cohomology calculations showing that it is a universal central extension.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The continuous cohomology of Lie algebragéf-vector fields [1,6—8] has provento be a
subject of great geometrical interest: One of its most famous applications is the construction
of the Virasoro algebra as the universal central extension of the Lie algebra of vector fields
on the circle.
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Because of its interest in conformal field theory, it is tempting to generalize the Virasoro
algebra to higher dimensions. In this perspective, the results of Gelfand and Fuks on the
cohomology o, the Lie algebra of formal vector fieldssirvariables, and the cohomology
of Vec{ M), the Lie algebra of > vector fields on a manifoldi/, are disappointing, because
they show on the one hand

HP?(W,) =0 forO<p<2n+1

and on the other that there is a spectral sequence abutig@dec(M)), i.e. the diagonal
cohomology ofVec{ M), with second term

EYY = H_,(M)® HI(W,).

These two results show that there cannot be a non-trivial central extensu@cio¥) in
case dingM) > 1.

Recall that the Virasoro algebra is characterized as being the universal central extension
of the Lie algebra of outer derivations of the central extension of the Loop- or Kac—Moody
algebrac> (S, Lie(G)), G being a finite-dimensional, compact, simple, simply connected,
connected Lie group with Lie algebtae(G).

Now, Etingof and Frenkel [2] — along with Khesin, see also [3,5] — investigated the
current groupC°(Z, G) as a promising two-dimensional analogue of the Loop group
C>(S%, G), see also [3,5]. They show ([2, Proposition 1.3]) that the Lie algebra of outer
derivations of g-dimensional central extension of the current algebt&( Xz, Lie(G)) is
Vech, 1(X) for genusg > 2, andVech 1(X) x (9/9z) for g = 1.

Consequently, the universal central extensioivedb 1(X) (resp.Vech 1(X) x (3/92)
for g = 1) — if it exists — is a promising analogue in two dimensions of the Virasoro
algebra, leading possibly to an interesting representation theory (Sugawara construction in
two dimensions, etc.).

In this article, we show that there exists a universal central extensigaodf, (%) with
g-dimensional center, as expected. In order to do this, we investigate in the first section the
cohomology of the formal version &ecb 1(X), i.e. of W1 ® C[[¢]]. It turns out to be the
same as the one d¥, at least in degrees up to 3. In Section 2, we “globalize” the result
by means of the Gelfand—Fuks spectral sequence for diagonal cohomology, showing finally
that not only the diagonal, but also the continuous cohomolodgot 1(X) is 0 in degree
1 andg-dimensional in degree 2. Section 3 recalls some known facts helping to construct
finally the central extension.

2. Cohomology ofW; ® C[[1]]

Let W, be the Lie algebra of vector fields on the real line with complex coefficients.
Define the usual Lie bracket on the tensor prodiigtz C[[¢]]:

[x1 ® p1, x2 @ pa] = [x1, x2] ® p1p2.

The resulting Lie algebra will be noted;. We propose to study the continuous co-
homology of W1, and the result of this section will be the answer in dimension 0, 1, 2
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and 3. The author ignores the complete cohomology. The first step is the reduction of the

Chevalley—Eilenberg complex involving all continuous cochains to the subcomplex consist-

ing of cochains of weight 0 under the action of the Euler figle= z(d/dz). A well-known

theorem states that the inclusion of this subcomplex induces a cohomology equivalence.
Let us recall the weight-0-subcomplex in the caséVaf

Cioy(W1) = Ceo; CS(W1) = Ce_1 Aer;
Coy(W)=Ce_1Aegher;  Cloy(W)=0 V¥p=>4

In the case of¥1, the subcomplex is unfortunately infinite-dimensional; for example in
degree 1, alég ® C[T] has weight O T being the dual of). We will drop the tensor sign
betweery; andT” in the following. An additional problem arises from the fact that cochains
€, p1(T) ® €; p2(T) are not necessarily antisymmetric(in j), but only in((, 1), (j, 2)).

So the low degree terms of the weight-O-subcomplex in the caBg oéad as follows:

Cloy(W1) = ® CT" ep;
r>0

CEH(W1) = ®CT e_1 AT e1 ® ®CT €0 A T eo;
r,.s r,s

C?O)(Wl) = @ICTrE_l AT egAT'e1 ® @I(CTVE_l ATSe_1 AT er ® @I(CTréo
s, r,s, r,s,
AT eg A T eg.

To calculate the cohomology, we will explicitly compute kernel and image of the
Chevalley—Eilenberg coboundady

2.1. HY(Wy)

Let G1, G2 be 2 elements oy, explicitly G; = 3" Gy, 1% ey,
We calculate the coboundary ®f,.a,T"q:

r

d (ZarTréo) (G1,G2) =Y a, T (t"""?)eo((t2 — t1)ery 41,)

=Y asy15+2(—2G, 16, 1+ 2G4, 1Gyy 1),

51,52

To compare, we calcula®_ a,, ,T"e1 A T™2¢_1)(G1, G2) as follows:
(Z ary,r, T"eL A Tr2€_1> (G1, G2)
1
-2 Zarl,rz(Trlel ®T"%e_1 —T"?e_1® T"e1)(G1, G2)

1
= é Zasl,sz(Gsl,lez,fl - le,flez,l)-

51,52
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We deduce

d (Za,T’eo) = =4 by, T e AT6
r

with brl,i’z = Ari+ry-
So we have that the kernel of the Chevalley—Eilenberg cobountiarydegree 1 is 0,
and in conclusion

HY(Wyp) = 0.

Remark. The same result follows from the method of the Laplace operator which works
well in degreed and?2.

2.2. H3(Wy)

From the result of the preceding subsection, we deduce that the two-coboundaries
Zrl,rzarl»rz(Trle—l) A (T"2¢7) are characterized by the fact that

Ary.ry = brytry. (1)

There are no two-coboundariesdn ;CT"eg A T* €.
LetG1, G2, Gz € Wy, i.e. explicitly G; = Zwi Gy, t'ie, fori =1,2,3.

d (Zarl,rz(T”Gl) A (Trzfl)) (G1, G2, G3)

11,12
_1 > ryry Gy Gty Gsgury X AT M 2)e_1((12 — 11) €1y 41) T2 ()€ (ery)
2 r1,r2 ' s1,t1 52,12 53,13 12 1)€t1+12 1\€13
TjsSisli
—T" () e_1((13 — t1)er 415) T2 (12)€1(er,)
FT (27 3)e_1((13 — 12)er+13) T2 (1€ (ery)
—T" (1152 e1((t2 — 11) €1y 41,) T2 (%) e_1(e15)
FT (1)1 (13 — 11)en 1) T2 (1°2)e—1(er,)
— T (73 e1((13 — 12)erp13) T2 (1) e—1(ery) }

Here, we have six terms because we antisymmetrized the three terms from the co-
boundary. Now evaluating gives:

3
e = E Z {(asz-‘rsg,sl - as‘1+S3,S2)GS1,—1G32,—1GS3,2 + - } (2)
§1,52,53
1
+§ Z {(asl"l‘SZ’SS - asl,s2+53)Gsl,—lez,Ong,l + - } (3)

$1,52,53



F. Wagemann/Journal of Geometry and Physics 36 (2000) 103-116 107

Observe that2) gives a (coboundary-)contribution ®, ; ,CT"e_1 A T’e_1 A T'ey,
wheras(3) gives a contribution tep, ; ;CT"e_1 A T €g A T'e1.
Let us show now that all two-cocycles from). ;CT"e_1 A T*¢1 are two-coboundaries:

Lemma 1. The cocycle conditiony, s, s; — ds;+s3,5, = 0 implies conditiorl.

Proof. Letry, rp, 51,52 € N such thaty + ro = s1 + s2. We have to show that,, ,, =
as, s,-Using the cocycle condition.

Let us suppose without loss of generality that< s1.

Thus we haves > sp,i.e.3p 1 rp = p + s2.

Ary,rg = Ary,ptsz = Ari+p,sz
because of the cocycle condition. But
ri+p=ri1+r2—s2=-s1.

This showsz,, -, = as; s,- O

In order to state the result oH2(W1), we have to consider the contribution from
@, sCT"eg AT €g. The same type of computation as above shows that the cocycle condition
readsa,, 4535, = ds,, 51453 BUtar, -, should be anti-symmetric ifr1, r2) because it comes
from an element of5, ;CT"eg A T €p. Thus itis 0.

Corollary 1.

H%(Wy) = 0.

Remark. The method using the Laplacian still works in decz@ad shows the same result.
For degrees, it would be too cumbersome

Our result is also consistent with Zusmanovich'’s result [12] on the second homol-
ogy space of current Lie algebras, becaligg[W1, W1] = 0, H2(W1) = 0 andHC;

(C[[:]) = 0.

2.3. H3(Wy)

2.3.1. Contribution fron®,. ; ;CT e_1 A T eg A T'e€1

Let us deal first with the most important part, the contribution frem, ;CT"e_1 A
TSeo A Tleq.

LetG; € Wi,i.e.G; =Y, Gy t%e, fori =123 4.
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1
d 6Zarl,,z,,s(Tfle,l)A(szeo)A(T’3el) (G1,G2,G3,Gy)

TjsSisti

= % Z ry.rpr3G 51,10 G521 G 53,13 G squta
F St

AT (Y2 T2 (83) T3 (1) e _1((t2 — 11)er 41,)€0(ery)€1(ery)

F (=T V)T 2(2) T (1) e _1((13 — 11)er +13)€0(en)€1(ery))
FHT @) T2(2) T3 (1%3)e_1((ta — t1)er 415)€0(er,)€1(ery))
FET@E2)T2 () T3 (1) e_1((13 — 12)ery115)€0(er )€ (er,))

F (=TT ) T3 (1) e _1((14 — 12)erp115)€0(er,)€1(ey3))

FH TN T2 ) T3 (1) e_1((14 — 13)erz115)€0(er)en(er,) + -+ )

Here, the dots at the end mean that the above term is to be repeated five times in order to
anti-symmetrize it.

The coboundary gives six terms. Evaluating gives two additional terms to these six terms
because fok1(er+;), one has two possibilities = 0,/ = 1 andk = 2,1 = —1. By
interchangingt andl, one doubles the number of terms, giving 16. So, in total, we have six
times 16 equals 96 terms in the sum.

Let us write down this sum with many ellipses:

1

== E {(as1+s2,x3,S4 — Agq+s3,52,54 — Asq,53,50+s4 T asl,sz,33+s4)

§1,52,53,54

XGsl,flez,Ong,OGs‘;,l + -+ 2(asg,s1+s4,sz + sy, 5345054

—0s3,51+52,58 — As1,50453,52) Gs51,-10 52,1053, 1G5y 1 + - -+ + 3=y 53,5142

+asl,S3,S2+S4)GS1,—lez,Zng,OGm,—l + - }

Splitting —1 or 1 into (0, —1), (—1,0) or (0, 1), (1, 0) gives terms of the first kind,
splitting 0 into(1, —1), (—1, 1) gives terms of the second kind, weightedwét 2 because
(t2 — 1) = (1 — (—1)) = 2, splitting 1 into(2, —1), (—1, 2) gives the terms of the last
kind, weighted with a 3.

This gives us three types of cocycle conditions:

As1+52,53,54 — As1+53,52,54 = As1,53,50+s54 — As1,52,53+54 (4)
As3,514sa,50 T A5y, 53+52,54 = Asz,51+s0,524 T Asq,54+53,52 (5)
Asy,s53,51+s2 = Usq,53,50+54 (6)

Recalling term (3) and the contribution fro@y ;CT"ep A T¥€g, One sees that cobound-
aries are those satisfying

Ary,rp,rs = britra,rs = Droratrs (7

or

Ary,rpry = Oritra,ry = brori4rs- (8)
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Lemma 2. Thea,, ,, r, Satisfying(4)—(6) can be recontructed fror(i7) and (8), except
ao,0,0-

Proof. Eq. (7) is 0 forrp = 0. Otherwise, one has three free parameters, so we can recon-
Structar, r, r4, €XCEPLL 0,7

One easily sees that (4)—(6) permit to construcizglb,, with fixedm +n = k +1
from a givenay o, so the cocycles which cannot be reconstructed in this step are the
a0, parametrized by the sukH-[. Eq. (8) permits to construct all, ., -, €xcept those
with 1 = rp in casesz = 0 or those withrp = r3 in cases; = 0. The upshot of these
considerations is thatp o o is the only cocycle-coefficient which cannot be recontructed
using (7) and (8). d

So, the contribution frone, ; ;,CT"e_1 A Tep A T'eq 1O H3(W1) is one-dimensional
and generated by the image of the Godbillon—Vey cocycle under the map

H3(W1) < H3(Wy)
which is induced by the Lie algebra homomorphism

Wi — Wi, Zamtres — Zao,ses.
r.s S

2.3.2. Contributions fron®, ; ,CT e_1 A T*e_1 A T'e2 and@®,.5,CT" o A T*eo A T' €0
are 0

Now, let us show that the contributions from, ;;CT"e_1 A T*¢_1 A T'ez and
®r.5.:CT eg A TS¢g A T'eg are 0.

1
A2 Y trnrn(T"e0) A (I"20) A (T70) | (G1. Ga, Ga, Ga)

rj,Sisti

1 .
- § Z {antlsyml-fsz,x?”s4a51+S2,53,S4Gsl,—lez,leg,OGS4,0 + - }

51,582,354

Here, antisym, ,,ax.1.,» means the antisymmetrizationaf; », in the three indices. So
the cocycle condition just means thaf ., ., = 0 and the contribution from®, ; ;CT"eg A
TSeo A T'egto H3 (W) is 0.

For the contribution fron®, ; ,CT"e_1 A T e_1 A T'ep, we compute

1
d| & 2 arrrs(Te1) A (T7260) A (T761) | (G1, G2, G, Ga)

rj,Sisti
1
= 6 Z {(a.Y1+S2,AY3,S4 + Asq,59+53,54 — Zasl,S:g,Sz-i-S4)GS]_,—1G52,0G53,—1GS4,2
$1,52,53,54
+ -+ Aasg 54, 51450F g, 51,50+53 + As1.53,50452) G51,—1G 523G 53 —1Gsy 1+ -+ - }
So, here are two types of cocycle conditions and the coboundary conditiomfeads =

br2+r3,r1 - br1+r3»r2-
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Actually, this last condition expresses just the requiremenifgs, ., to be antisymmetric
with respect tdri, r2). This is natural because it comes from an elemeat,in; CT"e_1 A
TSe_1 A T'ez. We see that all elements can be written as coboundaries, making the contri-
bution frome,., ;CT"e_1 A TSe_1 A T'ep to H3(Wy) equally 0.

Now we can summarize the content of three subsections:

Theorem 1. The Lie algebra homomorphism

¢ W1 — Wy, Zar,stres = Zao,ses
7S s

induces a cohomology equivalence at least in degdeds 2and 3. Explicitly

¢P : HP(Wy) = HP(W1) for p=0,1,2, 3.
It is natural to conjecture that” is an isomorphism for alp.

3. Second cohomology d¥ech,o(X)

Let X be a compact Riemann surface of gegutet T,§C|h0|2 denote the holomorphic
part of the complexified tangent spal‘ﬁz. LetVect o(X) denote the space 6f° sections

of the holomorphic vector bundEC o= = U,,EzT;,CIhmE- It is closed under the usual
Lie bracket of vector field and thus a topological (Fréchet nuclear) Lie algebra. It is rather
astonishing that the formal vector field Lie algebra which enters in the cohomology of
Vect o(X) is not Wy, but Wy.

The main result of this section is

Theorem 2. Let M be a complex manifold of complex dimension n
There is a spectral sequence for the diagonal cohomology of et with second
term

EY? = HyPO(M) ® HY(W,).
We deduce immediately the following
Corollary 2. LetX be a compact Riemann surface of gegus 1.

There is a(converging spectral sequence for the diagonal cohomology of Mg& )
with second term

Ep4 = Hé‘l’-"(z)/ ® H(Wy).
Some remarks are in order:

Remark 1. E5? does not involved 4 (Wy), but H4(Wy), because — as we will see below
—there is one real dimension missing. This is not importanﬂf%q’\/ect{,o(E)) as we have
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an isomorphisnH?(W1) = H?(Wy) for ¢ < 3. If the conjecture stated in the last section
is true, it does not even matter for genegaé N.

Remark 2. H;,_”’O(E) denotes th@-cohomologyrecall d = (3 + 9)) of the space of *
differential forms of typ€—p, 0), Hé_”’o(Z) denotes it$-cohomology. In particular, it is
non-zero only for-p > 0. H{;P’O(E)’ denotes itgcontinuou$ dual.

Concretely, we have

HOz)=C,  HO®)=C.  H"Z)=0 for —p#£0.1

Remark 3. By the dimensions of the cohomology spaces, it is obvious that
® Ey"=0 and @ EY!=CS.
p+q=1 p+q=2

This shows thaHi (Vect o(X)) isOand H§ (Vect o(X)) is at most of dimension g. On
the other hand, we have g independent generators, soHIjzﬁVec&,o(E)) is exactly of
dimension g. Explicitly, we have for gengis- 1:

f, g/ } dzn6

9 S0 foo8
C(f(ZaZ)a_Z’g(Z’Z)a_Z>_/E{ 8

15 8l
Here, 6 is an anti-holomorphid-form, the intersection-dual of an elementﬂ"g’o(x).
R is a projective connection o — this term is added in order to have globally defined
holomorphicl-form.

— 2R

Corollary 3. LetX be a compact Riemann surface of gegus 1.
dim(H3 (Vect o(%))) = g

As Hi (Vect o(X)) = 0, we have a universal central extension of Ye¢®) given by the
g generatorswith centerHél’O(E)/.

Remark 4. For genusg = 1, this corollary is already established as mentioned2h
Remark that Veglp(T) is justQ (Vect(S1)). Sq the result can also be easily deduced from
[12] together with the Hochschild—Serre spectral sequence for the short exact sequence

0 - Q(Vec(SY) — Q(Vec(sh) x <i> N <i> o
0z 0z

Remark 5. Ourtheoremis consistentwith Remaiik [4, p. 76]: There is a morphism of the
dual of the Dolbeault complex into the cohomology complex of WeEY); for non-compact
¥, H? (Vect o(X)) isinfinite dimensional fop = 3, for compact, itis finite-dimensional
for all p.

Proof of the theorem. We will rely heavily on [6, Theorem 2.4.1a., p. 144] or on the
original reference [7].
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The idea is to calculate Gelfand—Fuks cohomology of vector field Lie algebras using
the spectral sequence induced from the diagonal filtration. To compufetterm of this
spectral sequence, Gelfand and Fuks propose another spectral sequence, relying on the order
filtration, see [6]. We change this filtration in the complex context to the filtration which
concerns only the-jet of the section, and not the whole jet:

Recall that a cochain € C?(Vect o(M)) can be regarded as a generalized section of
a suitable vector bundl®?(TC|,qM) on MY, [6, pp. 142 and 143]. In particular, the
subspace of cochains of diagonal fiItrathrC,‘j (Vect o(M)), can be regarded as the space
of generalized sections concentratedl\di,ﬁ C M7 with

M} = {(x1, .)€ MY V(L. igyn) © (Lo R 3000 ¢ X =, )

Now remark tha®? (T C|o1M) is a holomorphic vector bundle on the complex manifold
M¢4. In particular, the notion of a triviak-jet in z of a section ofR (TC |hoiM) (in a point
x € M1Y)isindependent on the choice of the local coordinat#/e restrict our setting now
to the diagonal subcomplex; (Vect, o(M)).

Definition. We say that a generalized sectior Cf (Vect o(M)) has orde m if ¢(s) =
0 for all sections € I'(®7(TC|hoiM)) such thats has a trivialm-jet in a neighbourhood
of every point ofA(M). Denote:

F"C{ (Vect o(M)) = {c € C](Vect o(M))|c hasorder < g —m}.

It is easy to see that this gives a filtration on the diagonal complex. Indeed,
d(F™C{(Vect o(M))) C F’”Cfl(Vec&,o(M)), because the bracket Mect o(M) in-
volves only derivatives with respecto[7, cf. 2.10, p. 198]. In addition, itis exhaustive, be-
cause a sectiane I'(®7(TC|hoiM)) with trivial oo-jetin z is zero due to the-dependence
coming from the transition functions in the holomorphic bungi& 7 |noM).

In conclusion, we have the same situation as Gelfand and Fuks, but the anti-holomorphic
half is missingEé”q of the spectral sequence associated to this filtration is the quotient of
diagonal cochain€§+q (Vect o(M)) which are of order ¢ (i.e. vanishing on elements
having trivialg-jets (inz)) factored by those of ordet g.

Gelfand and Fuks translate elementsE§f? into generalized sections (suitable anti-
symmetrized) of the bundle

gg’q _ Hom (SqnormMpHA’ (®P+4T<C|hO|M) |A> .

Here, normyy+¢ A is the (holomorphic) normal bundle of the submanifdldM) c
MP*4 (it is the quotient bundle of the (holomorphic) tangent bundlé/dfby the (holo-
morphic) tangent bundle & (M)). S7normy,»+4 A relates to the fact that exactly thget
(in z) is non-zero, jets of vector fields a4 restricted to the diagonal, thus involving
the normal bundle. The restriction to the diagonal stems from the definition of diagonal
cochains being concentrated on the diagonal.

The anti-symmetrized version is denoted

eb? = Alt (S‘fnormMp+qA, (®p+qTC|holM> |A)-
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Now, we pass to considerations on the fibres of these bundles:
Let V denote the fibre of €| M. The fibre oféy? is thus

Hom(SH{(Ve®---dV)/ VAL, V® ---Q V).
p+q

Here,V, stands for the image of the diagonal inclusiérn— V @ --- @ V. Because of
the restriction of the order filtration of Gelfand—Fuks to jets involving jystinly the fibre
of the holomorphic tangent space is showing up in the above formula.

Now, we can follow the proof of Theorem 2.4.1a. in [6, p. 144] word by word. We get
(cf. p. 147)

EP? =@ rO(My @ HY(Wy).

But it is also clear that the differential”? will be the restriction ta2~7:%(M) of the
one evidenced by Gelfand and Fuks, thus:

=9 @id: QPO(M) @ HI(W1) — Q- PTVOMmy @ HI(Wy).

This shows the theorem. O

Note that we can transpose all the content of the above lin®edb 1(X) simply by
interchanging andz, so we have the same cohomological situatiorMerp 1(X).

Remark 6. It is easily seen that the spectral sequence for the order filtrgtafculating

the cohomology of the diagonal subcomplexiapses for Riemann surfacéecause there

are only2 non-zero cohomology spaces. Generalizing the Gelfand—Fuks spectral sequences
for the terms ofdiagonal) filtration k (cf. [6, p. 142]),we arrive at:

WEP = gk sk ) ® [ ® HEW)D®--® qu(Wl):|
q1+--+qr=q
This shows that there are no contributions from other spaceHth/ect_Lo(M)) for
[ = 0,1,2,3. In genera)] we conjecture that the spectral sequence for (tiegona)
filtration also collapseg¢for Riemann surfac@showing that — as in the case®% vector
fields — the diagonal cohomology generates multiplicatively the continuous cohomology.
Unfortunately we were not able to calculate

—p.0, sk sk
Hy 77 (X%, X )

for general k
Let us compare this result with tHaypecohomology ofthe sheaf gfholomorphic
vector fields ok, cf. [4,11]:

H* (2, CEop(HOD) = S¥[n, @1, . . ., wpy(x), 0].

Here, C%,«(Hol) is the sheaf of continuous cochain complexes of the sheaf of holomorphic
vector fields Hal $*[...] denotes the graded symmetric algeljropf algebrg in some
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generators andh1(X) = dim(H1(X)). The generators), w; and # are respectively of
degreesl, 2and3.

Sq if the conjecture is true, the continuous cohomology of Mg&) constitutes a
part of H* (X, C%,((Hol)), namely half of the generators in degr@and the generator in
degrees.

4. Atwo-dimensional analogue of Virasoro algebra

In this section we just recall known facts on the Virasoro algebra and construct by analogy
the universal central extension\gécp 1(%).

4.1. Virasoro algebra

The Virasoro algebra Vir is the universal central extensioWesf( S1) by means of the
Gelfand—Fuks cocycle:

d d _ f/ g/
c (f(e)d_e’ g(9)£> - /;‘1 ’f// g//

For a discussion of Vir from the point of view of universal central extensions, see [10].

A different characterization of Vir is the following: Letbe a (finite-dimensional) simple
Lie algebra. LetC*>(S1, g) be the (Fréchet topological) vector spacetd? maps from
S1to g. Itis a Lie algebra by the pointwise bracket, dentoited Let I:g be the central
extension oLg given by the Kac—Moody cocycle

(6)de

v (f(0),g0)) = /Sl<ﬁ g (0) db.

Here,(, ) is the Killing form of g.
In this context, Vir is the universal central extension of the Lie algebraQytof outer
derivations ofLg. Let us briefly show this well-known fact.

Theorem 3.

Out(Lg) = VectsY).

Proof. As shown using Ex. 7.2—7.5in [9, pp. 82 and 83], we have
Der(Lg) = VectS?) @ ad(Lg).

Here, Defq) denotes the Lie algebra of derivations of the Lie algebaadad(q) is its
subspace of inner derivations.

Now, it is easy to see that the mayp: Der(g) — Der(g), D — D is injective in case
q is perfect — the kernel ap being those derivations with values in the center. Therefore,
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we must look for derivations aof g inside DefLg). The condition forD € Der(Lg) to be
in Der(Lg) is (as is easily shown)
Y(D(f).8) + ¥ (£, D)
v(f, 8 ’
forall f, g € Lg— K being the central element¢ = Lg@® CK as vector spaces).

This condition is satisfied fob € Vec(S!) andD € ad(g) ¢ ad(Lg) — the factor in
front of K being 0. In conclusion:

D(K) =

Der(Lg) = VectSY) @ ad(Lg) and Outig) = Vec(Sh). O

4.2. Generalization

Here we follow closely [2].

Let ¥ be a compact Riemann surface of gepuiset g denote the current (Lie) algebra,
i.e. the Lie algebra of > maps fromX to g, g being a simple Lie algebra with its Killing
form (, ). By a well-known theorem of S. Bloch and B. Feigin, cf. [2], the universal central
extension og > is an extension by the spad€, (C® (X)) = Ql(E)/dQO(E), the quotient
space of all 1-forms oiX by the subspace of exact 1-forms. TRé(X)-valued cocycle
defining this extension is

u(f, g) = (f,g) modd2’(D).

Etingof and Frenkel had the idea to restrict this extension to one with a finite-dimensional
center by considering only the 1-forms compatible with a fixed complex structug, on
i.e. the holomorphic 1-forms.
Thus, letHs, be the space of holomorphic differentials Bn It is of dimensiong. Let
w € Hy ® Hy, be the identity element, seen as a holomorphic differential evith values
in H.. Define a 2-cocycle op* with values in the triviagz-moduleHE by the formula

Q(f,g)zfzw/\ﬁ,dg),

where f, g € g¥. This cocycle defines g-dimensional central extension gF, denoted

g

Now, let us cite [2, Proposition 1.3]:

Proposition 1 ([2, Proposition 1.3]).If g > 1, the Lie algebra of outer derivations g
coincides with the Lie algebra Vect(%) of all complex valued vector fields & of type
(0, 1), i.e. of the formu(z, 7)(9/9z) for any local complex coordinate @ being a smooth
function

If ¢ = 1,the Lie algebra of outer derivations {§/3z) x Vech 1(X).

For the proof, we can remark that the proof of Theorem 3 shows thag®ut= Vec(x).
Afterwards, one follows [2].
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As given in Remark 3, Section 3, we hayendependent two-cocycles drech 1(X)
(where one has to use their anti-holomorphic version). Corollary 2 confirms Etingof,
Frenkel, Khesin and Roger's conjecture that — as already verifieg fer 1, cf. [2]

— this gives the universal central extensionveth 1(X), thus giving a two-dimensional
analogue of the Virasoro algebra as characterized by Theorem 3.
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