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Abstract

In this article, we study the cohomology of Lie algebras of vector fields of holomorphic type
Vect1,0(M) on a complex manifoldM. The main result is the introduction of a kind of order filtration
on the continuous cochains onVect1,0(M) and the calculation of the second term of the resulting
spectral sequence. The filtration is very much in the spirit of the classical order filtration of Gelfand
and Fuks, but we restrict ourselves toz-jets only for a local holomorphic coordinatez. This permits
us to calculate the diagonal cohomology (because of the collapse of our spectral sequence) of
Vect0,1(6) for a compact Riemann surface6 of genusg > 0.

In the second section, we calculate the first three cohomology spaces of the Lie algebraW1⊗C[[ t ]]
which is regarded as the formal version ofVect1,0(6). In the last section, we recall whyVect0,1(6)
can be regarded as the two-dimensional analogue of the Witt algebra. Then, we define, following
Etingof and Frenkel, a central extension which is consequently a two-dimensional analogue of the
Virasoro algebra — our cohomology calculations showing that it is a universal central extension.
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1. Introduction

The continuous cohomology of Lie algebras ofC∞-vector fields [1,6–8] has proven to be a
subject of great geometrical interest: One of its most famous applications is the construction
of the Virasoro algebra as the universal central extension of the Lie algebra of vector fields
on the circle.
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Because of its interest in conformal field theory, it is tempting to generalize the Virasoro
algebra to higher dimensions. In this perspective, the results of Gelfand and Fuks on the
cohomology ofWn, the Lie algebra of formal vector fields innvariables, and the cohomology
of Vect(M), the Lie algebra ofC∞ vector fields on a manifoldM, are disappointing, because
they show on the one hand

Hp(Wn) = 0 for 0< p < 2n+ 1

and on the other that there is a spectral sequence abuting toH ∗
1(Vect(M)), i.e. the diagonal

cohomology ofVect(M), with second term

E
p,q

2 = H−p(M)⊗Hq(Wn).

These two results show that there cannot be a non-trivial central extension ofVect(M) in
case dim(M) > 1.

Recall that the Virasoro algebra is characterized as being the universal central extension
of the Lie algebra of outer derivations of the central extension of the Loop- or Kac–Moody
algebraC∞(S1,Lie(G)),G being a finite-dimensional, compact, simple, simply connected,
connected Lie group with Lie algebraLie(G).

Now, Etingof and Frenkel [2] — along with Khesin, see also [3,5] — investigated the
current groupC∞(6,G) as a promising two-dimensional analogue of the Loop group
C∞(S1,G), see also [3,5]. They show ([2, Proposition 1.3]) that the Lie algebra of outer
derivations of ag-dimensional central extension of the current algebraC∞(6,Lie(G)) is
Vect0,1(6) for genusg ≥ 2, andVect0,1(6)× 〈∂/∂z〉 for g = 1.

Consequently, the universal central extension ofVect0,1(6) (resp.Vect0,1(6) × (∂/∂z)

for g = 1) — if it exists — is a promising analogue in two dimensions of the Virasoro
algebra, leading possibly to an interesting representation theory (Sugawara construction in
two dimensions, etc.).

In this article, we show that there exists a universal central extension ofVect0,1(6) with
g-dimensional center, as expected. In order to do this, we investigate in the first section the
cohomology of the formal version ofVect0,1(6), i.e. ofW1 ⊗ C[[ t ]]. It turns out to be the
same as the one ofW1, at least in degrees up to 3. In Section 2, we “globalize” the result
by means of the Gelfand–Fuks spectral sequence for diagonal cohomology, showing finally
that not only the diagonal, but also the continuous cohomology ofVect0,1(6) is 0 in degree
1 andg-dimensional in degree 2. Section 3 recalls some known facts helping to construct
finally the central extension.

2. Cohomology ofW1 ⊗ C[[ t ]]W1 ⊗ C[[ t ]]W1 ⊗ C[[ t ]]

Let W1 be the Lie algebra of vector fields on the real line with complex coefficients.
Define the usual Lie bracket on the tensor productW1 ⊗ C[[ t ]]:

[x1 ⊗ p1, x2 ⊗ p2] = [x1, x2] ⊗ p1p2.

The resulting Lie algebra will be noted̃W1. We propose to study the continuous co-
homology ofW̃1, and the result of this section will be the answer in dimension 0, 1, 2



F. Wagemann / Journal of Geometry and Physics 36 (2000) 103–116 105

and 3. The author ignores the complete cohomology. The first step is the reduction of the
Chevalley–Eilenberg complex involving all continuous cochains to the subcomplex consist-
ing of cochains of weight 0 under the action of the Euler fielde0 = z(d/dz). A well-known
theorem states that the inclusion of this subcomplex induces a cohomology equivalence.

Let us recall the weight-0-subcomplex in the case ofW1:

C1
(0)(W1)=Cε0; C2

(0)(W1) = Cε−1 ∧ ε1;
C3
(0)(W1)=Cε−1 ∧ ε0 ∧ ε1; C

p

(0)(W1) = 0 ∀p ≥ 4.

In the case ofW̃1, the subcomplex is unfortunately infinite-dimensional; for example in
degree 1, allε0 ⊗ C[T ] has weight 0 (T being the dual oft). We will drop the tensor sign
betweenεi andT r in the following. An additional problem arises from the fact that cochains
εip1(T )⊗ εjp2(T ) are not necessarily antisymmetric in(i, j), but only in((i,1), (j,2)).

So the low degree terms of the weight-0-subcomplex in the case ofW̃1 read as follows:

C1
(0)(W̃1) = ⊕

r≥0
CT rε0;

C2
(0)(W̃1) = ⊕

r,s
CT rε−1 ∧ T sε1 ⊕ ⊕

r,s
CT rε0 ∧ T sε0;

C3
(0)(W̃1)= ⊕

r,s,t
CT rε−1 ∧ T sε0 ∧ T tε1 ⊕ ⊕

r,s,t
CT rε−1 ∧ T sε−1 ∧ T tε2 ⊕ ⊕

r,s,t
CT rε0

∧T sε0 ∧ T tε0.
To calculate the cohomology, we will explicitly compute kernel and image of the

Chevalley–Eilenberg coboundaryd.

2.1. H 1(W̃1)

LetG1,G2 be 2 elements of̃W1, explicitlyGi = ∑
Gsi,ti t

si eti .
We calculate the coboundary of

∑
rarT

rε0:

d

(∑
r

arT
rε0

)
(G1,G2)=

∑
arT

r(ts1+s2)ε0((t2 − t1)et1+t2)

=
∑
s1,s2

as1+s+2(−2Gs1,1Gs2,−1 + 2Gs1,−1Gs2,1).

To compare, we calculate(
∑
ar1,r2T

r1ε1 ∧ T r2ε−1)(G1,G2) as follows:(∑
ar1,r2T

r1ε1 ∧ T r2ε−1

)
(G1,G2)

= 1

2

∑
ar1,r2(T

r1ε1 ⊗ T r2ε−1 − T r2ε−1 ⊗ T r1ε1)(G1,G2)

= 1

2

∑
s1,s2

as1,s2(Gs1,1Gs2,−1 −Gs1,−1Gs2,1).
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We deduce

d

(∑
r

arT
rε0

)
= −4

∑
br1,r2T

r1ε1 ∧ T r2ε−1

with br1,r2 = ar1+r2.
So we have that the kernel of the Chevalley–Eilenberg coboundaryd in degree 1 is 0,

and in conclusion

H 1(W̃1) = 0.

Remark. The same result follows from the method of the Laplace operator which works
well in degrees1 and2.

2.2. H 2(W̃1)

From the result of the preceding subsection, we deduce that the two-coboundaries∑
r1,r2

ar1,r2(T
r1ε−1) ∧ (T r2ε1) are characterized by the fact that

ar1,r2 = br1+r2. (1)

There are no two-coboundaries in⊕r,sCT
rε0 ∧ T sε0.

LetG1,G2,G3 ∈ W̃1, i.e. explicitlyGi = ∑
si ,ti
Gsi ,ti t

si eti for i = 1,2,3.

d

(∑
r1,r2

ar1,r2(T
r1ε−1) ∧ (T r2ε1)

)
(G1,G2,G3)

= 1

2

∑
rj ,si ,ti

ar1,r2Gs1,t1Gs2,t2Gs3,t3 × {T r1(ts1+s2)ε−1((t2 − t1)et1+t2)T
r2(ts3)ε1(et3)

−T r1(ts1+s3)ε−1((t3 − t1)et1+t3)T
r2(ts2)ε1(et2)

+T r1(ts2+s3)ε−1((t3 − t2)et2+t3)T
r2(ts1)ε1(et1)

−T r1(ts1+s2)ε1((t2 − t1)et1+t2)T
r2(ts3)ε−1(et3)

+T r1(ts1+s3)ε1((t3 − t1)et1+t3)T
r2(ts2)ε−1(et2)

− T r1(ts2+s3)ε1((t3 − t2)et2+t3)T
r2(ts1)ε−1(et1)

}
Here, we have six terms because we antisymmetrized the three terms from the co-

boundary. Now evaluating gives:

· · · = 3

2

∑
s1,s2,s3

{
(as2+s3,s1 − as1+s3,s2)Gs1,−1Gs2,−1Gs3,2 + · · · } (2)

+1

2

∑
s1,s2,s3

{
(as1+s2,s3 − as1,s2+s3)Gs1,−1Gs2,0Gs3,1 + · · · } (3)
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Observe that(2) gives a (coboundary-)contribution to⊕r,s,tCT
rε−1 ∧ T sε−1 ∧ T tε2,

wheras(3) gives a contribution to⊕r,s,tCT
rε−1 ∧ T sε0 ∧ T tε1.

Let us show now that all two-cocycles from⊕r,sCT
rε−1 ∧ T sε1 are two-coboundaries:

Lemma 1. The cocycle conditionas2+s3,s1 − as1+s3,s2 = 0 implies condition1.

Proof. Let r1, r2, s1, s2 ∈ N such thatr1 + r2 = s1 + s2. We have to show thatar1,r2 =
as1,s2-using the cocycle condition.

Let us suppose without loss of generality thatr1 < s1.
Thus we haver2 > s2, i.e.∃p : r2 = p + s2.

ar1,r2 = ar1,p+s2 = ar1+p,s2

because of the cocycle condition. But

r1 + p = r1 + r2 − s2 = s1.

This showsar1,r2 = as1,s2. �

In order to state the result onH 2(W̃1), we have to consider the contribution from
⊕r,sCT

rε0∧T sε0. The same type of computation as above shows that the cocycle condition
readsas1+s3,s2 = as2,s1+s3. Butar1,r2 should be anti-symmetric in(r1, r2) because it comes
from an element of⊕r,sCT

rε0 ∧ T sε0. Thus it is 0.

Corollary 1.

H 2(W̃1) = 0.

Remark. The method using the Laplacian still works in degree2and shows the same result.
For degree3, it would be too cumbersome.

Our result is also consistent with Zusmanovich’s result [12] on the second homol-
ogy space of current Lie algebras, becauseW1/[W1,W1] = 0, H 2(W1) = 0 andHC1

(C[[ t ]]) = 0.

2.3. H 3(W̃1)

2.3.1. Contribution from⊕r,s,tCT
rε−1 ∧ T sε0 ∧ T tε1

Let us deal first with the most important part, the contribution from⊕r,s,tCT
rε−1 ∧

T sε0 ∧ T tε1.
LetGi ∈ W̃1, i.e.Gi = ∑

si ,ti
Gsi ,ti t

si eti for i = 1,2,3,4.
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d


1

6

∑
rj ,si ,ti

ar1,r2,r3(T
r1ε−1) ∧ (T r2ε0) ∧ (T r3ε1)


 (G1,G2,G3,G4)

= 1

6

∑
rj ,si ,ti

ar1,r2,r3Gs1,t1Gs2,t2Gs3,t3Gs4,t4

×{T r1(ts1+s2)T r2(ts3)T r3(ts4)ε−1((t2 − t1)et1+t2)ε0(et3)ε1(et4)
+(−T r1(ts1+s3)T r2(ts2)T r3(ts4)ε−1((t3 − t1)et1+t3)ε0(et2)ε1(et4))
+(+Tr1(ts1+s4)T r2(ts2)T r3(ts3)ε−1((t4 − t1)et1+t4)ε0(et2)ε1(et3))
+(+T r1(ts2+s3)T r2(ts1)T r3(ts4)ε−1((t3 − t2)et2+t3)ε0(et1)ε1(et4))
+(−T r1(ts2+s4)T r2(ts1)T r3(ts3)ε−1((t4 − t2)et2+t4)ε0(et1)ε1(et3))
+(+T r1(ts3+s4)T r2(ts1)T r3(ts2)ε−1((t4 − t3)et3+t4)ε0(et1)ε1(et2)+ · · · }

Here, the dots at the end mean that the above term is to be repeated five times in order to
anti-symmetrize it.

The coboundary gives six terms. Evaluating gives two additional terms to these six terms
because forε1(ek+l ), one has two possibilities:k = 0, l = 1 andk = 2, l = −1. By
interchangingk andl, one doubles the number of terms, giving 16. So, in total, we have six
times 16 equals 96 terms in the sum.

Let us write down this sum with many ellipses:

= 1

6

∑
s1,s2,s3,s4

{(as1+s2,s3,s4 − as1+s3,s2,s4 − as1,s3,s2+s4 + as1,s2,s3+s4)

×Gs1,−1Gs2,0Gs3,0Gs4,1 + · · · + 2(as3,s1+s4,s2 + as1,s3+s2,s4
−as3,s1+s2,s4 − as1,s4+s3,s2)Gs1,−1Gs2,1Gs3,−1Gs4,1 + · · · + 3(−as4,s3,s1+s2
+as1,s3,s2+s4)Gs1,−1Gs2,2Gs3,0Gs4,−1 + · · · }

Splitting −1 or 1 into (0,−1), (−1,0) or (0,1), (1,0) gives terms of the first kind,
splitting 0 into(1,−1), (−1,1) gives terms of the second kind, weighted with a 2 because
(t2 − t1) = (1 − (−1)) = 2, splitting 1 into(2,−1), (−1,2) gives the terms of the last
kind, weighted with a 3.

This gives us three types of cocycle conditions:

as1+s2,s3,s4 − as1+s3,s2,s4 = as1,s3,s2+s4 − as1,s2,s3+s4 (4)

as3,s1+s4,s2 + as1,s3+s2,s4 = as3,s1+s2,s4 + as1,s4+s3,s2 (5)

as4,s3,s1+s2 = as1,s3,s2+s4 (6)

Recalling term (3) and the contribution from⊕r,sCT
rε0 ∧ T sε0, one sees that cobound-

aries are those satisfying

ar1,r2,r3 = br1+r2,r3 − br1,r2+r3 (7)

or

ar1,r2,r3 = br1+r3,r2 − br2,r1+r3. (8)
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Lemma 2. Thear1,r2,r3 satisfying(4)–(6) can be recontructed from(7) and (8), except
a0,0,0.

Proof. Eq. (7) is 0 forr2 = 0. Otherwise, one has three free parameters, so we can recon-
structar1,r2,r3, exceptak,0,l .

One easily sees that (4)–(6) permit to construct allam,0,n with fixed m + n = k + l

from a givenak,0,l , so the cocycles which cannot be reconstructed in this step are the
ak,0,l parametrized by the sumk + l. Eq. (8) permits to construct allar1,r2,r3, except those
with r1 = r2 in cases3 = 0 or those withr2 = r3 in cases1 = 0. The upshot of these
considerations is thata0,0,0 is the only cocycle-coefficient which cannot be recontructed
using (7) and (8). �

So, the contribution from⊕r,s,tCT
rε−1 ∧ T sε0 ∧ T tε1 toH 3(W̃1) is one-dimensional

and generated by the image of the Godbillon–Vey cocycle under the map

H 3(W1) ↪→ H 3(W̃1)

which is induced by the Lie algebra homomorphism

W̃1 → W1,
∑
r,s

ar,s t
r es 7→

∑
s

a0,ses .

2.3.2. Contributions from⊕r,s,tCT
rε−1 ∧ T sε−1 ∧ T tε2 and⊕r,s,tCT

rε0 ∧ T sε0 ∧ T tε0
are 0

Now, let us show that the contributions from⊕r,s,tCT
rε−1 ∧ T sε−1 ∧ T tε2 and

⊕r,s,tCT
rε0 ∧ T sε0 ∧ T tε0 are 0.

d


1

6

∑
rj ,si ,ti

ar1,r2,r3(T
r1ε0) ∧ (T r2ε0) ∧ (T r3ε0)


 (G1,G2,G3,G4)

= 1

3

∑
s1,s2,s3,s4

{antisyms1+s2,s3,s4as1+s2,s3,s4Gs1,−1Gs2,1Gs3,0Gs4,0 + · · · }

Here, antisymk,l,mak,l,m means the antisymmetrization ofak,l,m in the three indices. So
the cocycle condition just means thatar1,r2,r3 = 0 and the contribution from⊕r,s,tCT

rε0 ∧
T sε0 ∧ T tε0 toH 3(W̃1) is 0.

For the contribution from⊕r,s,tCT
rε−1 ∧ T sε−1 ∧ T tε2, we compute

d


1

6

∑
rj ,si ,ti

ar1,r2,r3(T
r1ε−1) ∧ (T r2ε−1) ∧ (T r3ε−1)


 (G1,G2,G3,G4)

= 1

6

∑
s1,s2,s3,s4

{(as1+s2,s3,s4 + as1,s2+s3,s4 − 2as1,s3,s2+s4)Gs1,−1Gs2,0Gs3,−1Gs4,2

+ · · · + 4(as3,s4,s1+s2+as4,s1,s2+s3 + as1,s3,s2+s4)Gs1,−1Gs2,3Gs3,−1Gs4,−1 + · · · }
So, here are two types of cocycle conditions and the coboundary condition readsar1,r2,r3 =

br2+r3,r1 − br1+r3,r2.
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Actually, this last condition expresses just the requirement forar1,r2,r3 to be antisymmetric
with respect to(r1, r2). This is natural because it comes from an element in⊕r,s,tCT

rε−1∧
T sε−1 ∧ T tε2. We see that all elements can be written as coboundaries, making the contri-
bution from⊕r,s,tCT

rε−1 ∧ T sε−1 ∧ T tε2 toH 3(W̃1) equally 0.
Now we can summarize the content of three subsections:

Theorem 1. The Lie algebra homomorphism

φ : W̃1 → W1,
∑
r,s

ar,s t
r es 7→

∑
s

a0,ses

induces a cohomology equivalence at least in degrees0, 1, 2and3. Explicitly

φp : Hp(W1) ∼= Hp(W̃1) for p = 0,1,2,3.

It is natural to conjecture thatφp is an isomorphism for allp.

3. Second cohomology ofVect1,0(666)Vect1,0(666)Vect1,0(666)

Let6 be a compact Riemann surface of genusg. Let T Cp |hol6 denote the holomorphic

part of the complexified tangent spaceT Cp 6. LetVect1,0(6)denote the space ofC∞ sections

of the holomorphic vector bundleT C|hol6 := ⋃
p∈6T Cp |hol6. It is closed under the usual

Lie bracket of vector field and thus a topological (Fréchet nuclear) Lie algebra. It is rather
astonishing that the formal vector field Lie algebra which enters in the cohomology of
Vect1,0(6) is notW̃1, butW1.

The main result of this section is

Theorem 2. Let M be a complex manifold of complex dimension n.
There is a spectral sequence for the diagonal cohomology of Vect1,0(M) with second

term

E
p,q

2
∼= H

−p,0
∂ (M)′ ⊗Hq(Wn).

We deduce immediately the following

Corollary 2. Let6 be a compact Riemann surface of genusg > 1.
There is a(converging) spectral sequence for the diagonal cohomology of Vect1,0(6)

with second term

E
p,q

2
∼= H

−p,0
∂̄

(6)′ ⊗Hq(W1).

Some remarks are in order:

Remark 1. Ep,q2 does not involveHq(W̃1), butHq(W1), because — as we will see below
— there is one real dimension missing. This is not important forH 2(Vect1,0(6)) as we have
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an isomorphismHq(W1) ∼= Hq(W̃1) for q ≤ 3. If the conjecture stated in the last section
is true, it does not even matter for generalq ∈ N.

Remark 2. H−p,0
∂ (6) denotes the∂-cohomology(recall d = (∂ + ∂̄)) of the space ofC∞

differential forms of type(−p,0),H−p,0
∂̄

(6) denotes its̄∂-cohomology. In particular, it is

non-zero only for−p ≥ 0.H−p,0
∂̄

(6)′ denotes its(continuous) dual.
Concretely, we have

H
0,0
∂̄
(6) = C, H

1,0
∂̄
(6) = Cg, H

−p,0
∂̄

(6) = 0 for − p 6= 0,1

Remark 3. By the dimensions of the cohomology spaces, it is obvious that

⊕
p+q=1

E
p,q

2
∼= 0 and ⊕

p+q=2
E
p,q

2
∼= Cg.

This shows thatH 1
1(Vect1,0(6)) is 0 andH 2

1(Vect1,0(6)) is at most of dimension g. On
the other hand, we have g independent generators, so thatH 2

1(Vect1,0(6)) is exactly of
dimension g. Explicitly, we have for genusg ≥ 1:

c

(
f (z, z̄)

∂

∂z
, g(z, z̄)

∂

∂z

)
=
∫
6

{∣∣∣∣∣ f g

f ′′
z3

′ g′′
z3

′

∣∣∣∣∣− 2R

∣∣∣∣ f g

f ′
z g′

z

∣∣∣∣
}

dz ∧ θ

Here, θ is an anti-holomorphic1-form, the intersection-dual of an element inH 1,0
∂̄
(6).

R is a projective connection on6 — this term is added in order to have globally defined
holomorphic1-form.

Corollary 3. Let6 be a compact Riemann surface of genusg > 1.

dim(H 2
1(Vect1,0(6))) = g

AsH 1
1(Vect1,0(6)) = 0, we have a universal central extension of Vect1,0(6) given by the

g generators, with centerH 1,0
∂̄
(6)′.

Remark 4. For genusg = 1, this corollary is already established as mentioned in[2].
Remark that Vect1,0(T) is just�(Vect(S1)). So, the result can also be easily deduced from
[12] together with the Hochschild–Serre spectral sequence for the short exact sequence

0 → �(Vect(S1)) → �(Vect(S1))×
〈
∂

∂z

〉
→
〈
∂

∂z

〉
→ 0.

Remark 5. Our theorem is consistent with Remark1 in [4, p. 76]:There is a morphism of the
dual of the Dolbeault complex into the cohomology complex of Vect1,0(6); for non-compact
6,Hp(Vect1,0(6)) is infinite dimensional forp = 3, for compact6, it is finite-dimensional
for all p.

Proof of the theorem. We will rely heavily on [6, Theorem 2.4.1a., p. 144] or on the
original reference [7].
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The idea is to calculate Gelfand–Fuks cohomology of vector field Lie algebras using
the spectral sequence induced from the diagonal filtration. To compute theE2-term of this
spectral sequence, Gelfand and Fuks propose another spectral sequence, relying on the order
filtration, see [6]. We change this filtration in the complex context to the filtration which
concerns only thez-jet of the section, and not the whole jet:

Recall that a cochainc ∈ Cq(Vect1,0(M)) can be regarded as a generalized section of
a suitable vector bundle⊗q(T C|holM) on Mq , [6, pp. 142 and 143]. In particular, the
subspace of cochains of diagonal filtrationk,Cqk (Vect1,0(M)), can be regarded as the space
of generalized sections concentrated onM

q
k ⊂ Mq with

Mk
q = {(x1, . . . , xk) ∈ Mk | ∀(i1, . . . , iq+1) ⊂ (1, . . . , k) ∃(ij , ir ) : xij = xir }.

Now remark that⊗q(T C|holM) is a holomorphic vector bundle on the complex manifold
Mq . In particular, the notion of a trivialm-jet in z of a section of⊗q(T C|holM) (in a point
x ∈ Mq ) is independent on the choice of the local coordinatez. We restrict our setting now
to the diagonal subcomplexC∗

1(Vect1,0(M)).

Definition. We say that a generalized sectionc ∈ Cq1 (Vect1,0(M)) has order≤ m if c(s) ≡
0 for all sectionss ∈ 0(⊗q(T C|holM)) such thats has a trivialm-jet in a neighbourhood
of every point of1(M). Denote:

FmC
q

1 (Vect1,0(M)) = {c ∈ Cq1 (Vect1,0(M)) | c has order ≤ q −m}.
It is easy to see that this gives a filtration on the diagonal complex. Indeed,

d(FmC
q

1 (Vect1,0(M))) ⊂ FmC
q+1
1 (Vect1,0(M)), because the bracket inVect1,0(M) in-

volves only derivatives with respect toz, [7, cf. 2.10, p. 198]. In addition, it is exhaustive, be-
cause a sections ∈ 0(⊗q(T C|holM))with trivial ∞-jet in z is zero due to thez-dependence
coming from the transition functions in the holomorphic bundle⊗q(T C|holM).

In conclusion, we have the same situation as Gelfand and Fuks, but the anti-holomorphic
half is missing.Ep,q0 of the spectral sequence associated to this filtration is the quotient of

diagonal cochainsCp+q
1 (Vect1,0(M)) which are of order≤ q (i.e. vanishing on elements

having trivialq-jets (inz)) factored by those of order< q.
Gelfand and Fuks translate elements ofE

p,q

0 into generalized sections (suitable anti-
symmetrized) of the bundle

ε̂
p,q

0 = Hom
(
SqnormMp+q1,

(
⊗p+qT C|holM

)
|1
)
.

Here, normMp+q1 is the (holomorphic) normal bundle of the submanifold1(M) ⊂
Mp+q (it is the quotient bundle of the (holomorphic) tangent bundle ofMq by the (holo-
morphic) tangent bundle of1(M)). SqnormMp+q1 relates to the fact that exactly theq-jet
(in z) is non-zero, jets of vector fields onMp+q restricted to the diagonal, thus involving
the normal bundle. The restriction to the diagonal stems from the definition of diagonal
cochains being concentrated on the diagonal.

The anti-symmetrized version is denoted

ε
p,q

0 = Alt
(
SqnormMp+q1,

(
⊗p+qT C|holM

)
|1
)
.
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Now, we pass to considerations on the fibres of these bundles:
Let V denote the fibre ofT C|holM. The fibre ofε̂p,q0 is thus

Hom(Sq{(V ⊕ · · · ⊕ V )/V1}, V ⊗ · · · ⊗ V︸ ︷︷ ︸
p+q

).

Here,V1 stands for the image of the diagonal inclusionV → V ⊕ · · · ⊕ V . Because of
the restriction of the order filtration of Gelfand–Fuks to jets involving justz, only the fibre
of the holomorphic tangent space is showing up in the above formula.

Now, we can follow the proof of Theorem 2.4.1a. in [6, p. 144] word by word. We get
(cf. p. 147)

E
p,q

1 = �−p,0(M)′ ⊗Hq(W1).

But it is also clear that the differentialdp,q1 will be the restriction to�−p,0(M) of the
one evidenced by Gelfand and Fuks, thus:

d
p,q

1 = ∂ ⊗ id : �−p,0(M)′ ⊗Hq(W1) → �−(p+1),0(M)′ ⊗Hq(W1).

This shows the theorem. �

Note that we can transpose all the content of the above lines toVect0,1(6) simply by
interchangingz andz̄, so we have the same cohomological situation forVect0,1(6).

Remark 6. It is easily seen that the spectral sequence for the order filtration(calculating
the cohomology of the diagonal subcomplex) collapses for Riemann surfaces, because there
are only2non-zero cohomology spaces. Generalizing the Gelfand–Fuks spectral sequences
for the terms of(diagonal) filtration k (cf. [6, p. 142]),we arrive at:

(k)E
p,q

2 = H
−p,0
∂ (6k,6kk−1)

′ ⊗
[

⊕
q1+···+qk=q

Hq1(W1)⊗ · · · ⊗Hqk (W1)

]

This shows that there are no contributions from other spaces toHl(Vect1,0(M)) for
l = 0,1,2,3. In general, we conjecture that the spectral sequence for the(diagonal)
filtration also collapses(for Riemann surfaces) showing that — as in the case ofC∞ vector
fields — the diagonal cohomology generates multiplicatively the continuous cohomology.
Unfortunately, we were not able to calculate

H
−p,0
∂ (6k,6kk−1)

for general k.
Let us compare this result with the(hyper)cohomology of(the sheaf of) holomorphic

vector fields on6, cf. [4,11]:

H
∗(6,C∗

cont(Hol)) = S∗[η, ω1, . . . , ωb1(6), θ ].

Here,C∗
cont(Hol) is the sheaf of continuous cochain complexes of the sheaf of holomorphic

vector fields Hol, S∗[. . . ] denotes the graded symmetric algebra(Hopf algebra) in some
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generators andb1(6) = dim(H 1(6)). The generatorsη, ωi and θ are respectively of
degrees1, 2and3.

So, if the conjecture is true, the continuous cohomology of Vect1,0(6) constitutes a
part ofH∗(6,C∗

cont(Hol)), namely half of the generators in degree2 and the generator in
degree3.

4. A two-dimensional analogue of Virasoro algebra

In this section we just recall known facts on the Virasoro algebra and construct by analogy
the universal central extension ofVect0,1(6).

4.1. Virasoro algebra

The Virasoro algebra Vir is the universal central extension ofVect(S1) by means of the
Gelfand–Fuks cocycle:

c

(
f (θ)

d

dθ
, g(θ)

d

dθ

)
=
∫
S1

∣∣∣∣ f ′ g′

f ′′ g′′

∣∣∣∣ (θ)dθ

For a discussion of Vir from the point of view of universal central extensions, see [10].
A different characterization of Vir is the following: Letg be a (finite-dimensional) simple

Lie algebra. LetC∞(S1, g) be the (Fréchet topological) vector space ofC∞ maps from
S1 to g. It is a Lie algebra by the pointwise bracket, dentotedLg. Let L̂g be the central
extension ofLg given by the Kac–Moody cocycle

ψ(f (θ), g(θ)) =
∫
S1

〈f, g′〉(θ)dθ.

Here,〈, 〉 is the Killing form ofg.
In this context, Vir is the universal central extension of the Lie algebra Out(L̂g) of outer

derivations ofL̂g. Let us briefly show this well-known fact.

Theorem 3.

Out(L̂g) = Vect(S1).

Proof. As shown using Ex. 7.2–7.5 in [9, pp. 82 and 83], we have

Der(Lg) = Vect(S1)⊕ ad(Lg).

Here, Der(q) denotes the Lie algebra of derivations of the Lie algebraq andad(q) is its
subspace of inner derivations.

Now, it is easy to see that the mapφ : Der(q̂) → Der(q),D 7→ D is injective in case
q is perfect — the kernel ofφ being those derivations with values in the center. Therefore,
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we must look for derivations of̂Lg inside Der(Lg). The condition forD ∈ Der(Lg) to be
in Der(L̂g) is (as is easily shown)

D(K) = ψ(D(f ), g)+ ψ(f,D(g))

ψ(f, g)
K,

for all f, g ∈ Lg — K being the central element (L̂g = Lg ⊕ CK as vector spaces).
This condition is satisfied forD ∈ Vect(S1) andD ∈ ad(g) ⊂ ad(Lg) — the factor in

front ofK being 0. In conclusion:

Der(L̂g) = Vect(S1)⊕ ad(Lg) and Out(L̂g) = Vect(S1). �

4.2. Generalization

Here we follow closely [2].
Let6 be a compact Riemann surface of genusg. Letg6 denote the current (Lie) algebra,

i.e. the Lie algebra ofC∞ maps from6 to g, g being a simple Lie algebra with its Killing
form 〈, 〉. By a well-known theorem of S. Bloch and B. Feigin, cf. [2], the universal central
extension ofg6 is an extension by the spaceHC1(C

∞(6)) = �1(6)/d�0(6), the quotient
space of all 1-forms on6 by the subspace of exact 1-forms. The�1(6)-valued cocycle
defining this extension is

u(f, g) = 〈f, g〉 mod d�0(6).

Etingof and Frenkel had the idea to restrict this extension to one with a finite-dimensional
center by considering only the 1-forms compatible with a fixed complex structure on6,
i.e. the holomorphic 1-forms.

Thus, letH6 be the space of holomorphic differentials on6. It is of dimensiong. Let
ω ∈ H6 ⊗H ∗

6 be the identity element, seen as a holomorphic differential on6 with values
in H ∗

6 . Define a 2-cocycle ong6 with values in the trivialg6-moduleH ∗
6 by the formula

�(f, g) =
∫
6

ω ∧ 〈f,dg〉,

wheref, g ∈ g6 . This cocycle defines ag-dimensional central extension ofg6 , denoted
ĝ6 .

Now, let us cite [2, Proposition 1.3]:

Proposition 1 ([2, Proposition 1.3]).If g > 1, the Lie algebra of outer derivations ofĝ6

coincides with the Lie algebra Vect0,1(6) of all complex valued vector fields on6 of type
(0,1), i.e. of the formu(z, z̄)(∂/∂z̄) for any local complex coordinate z, u being a smooth
function.

If g = 1, the Lie algebra of outer derivations is〈∂/∂z〉 × Vect0,1(6).

For the proof, we can remark that the proof of Theorem 3 shows that Out(g6) = Vect(6).
Afterwards, one follows [2].
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As given in Remark 3, Section 3, we haveg independent two-cocycles onVect0,1(6)
(where one has to use their anti-holomorphic version). Corollary 2 confirms Etingof,
Frenkel, Khesin and Roger’s conjecture that — as already verified forg = 1, cf. [2]
— this gives the universal central extension ofVect0,1(6), thus giving a two-dimensional
analogue of the Virasoro algebra as characterized by Theorem 3.
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